FROM RESEARCH TO INDUSTRY

www.cea.fr

PIP-II LB650 RF TESTS AT CEA

Claude MARCHAND

CEA, DRF/Irfu/DACM/LISAH

June 26, 2018

PIP-II SRF TEST PROGRAM GOALS

- Design verification of components and subsystems prototypes, and qualification of production components
 - > power coupler conditioning & dressed cavity tests at high RF power
 - > should ideally precede final design and production procurements
 - will need dedicated 650 MHz power sources and upgrade of horizontal cryostat
- Comprehensive testing of at least 1st LB650 cryomodule before shipping to USA
 - enables to address global cryomodules performance risks
 - mandatory to validate transport scheme, by comparing in detail performance of cryomodule before/after transportation
 - Will need dedicated 650 MHz power sources and upgrade of LHe cryoplant and wave guides in cryomodule test bunker

- SupraTech-CryoHF RF test platform:
 - ➤ Helial liquid helium liquefier (140l/h) 4K and 2K + 3 2000l Dewar's

- > Two vertical cryostats (0.45m Φ , 1m long; 0.7m Φ , 1.9 m long) for low power qualification (Q°, E_{acc}), < 2 μ T remnant field
- \triangleright One horizontal cryostat (CryHoLab, 0.7 m Φ , 1.5 m long) for high power dressed cavity qualification up to cryo loads of 80W

Vertical cryostats

Horizontal cryostats

CryHoLaB SaTHoRI

Several radiologically shielded bunkers, one equipped with LHe cryo cooling capacities up to 80W, used now for ESS and SARAF, then PIP-II

- ➤ Several high power RF sources (352 MHz, 704 MHz, 1.3 GHz) unfortunately not useful for PIP-II 650 MHz frequency
 - -> will need to purchase dedicated 650 MHz SSA RF power sources

ESS/SARAF bunker fully instrumented with RF LPS and EPICS C/C Tuner control and LLRF are project specific, need to be provided by PIP-II

CEA EXPERIENCE ON CAVITY/CRYOMODULES TESTS

- Tests of elliptical and HWR dressed cavities in horizontal cryostat (CryHoLab):
 - > 2 TTF elliptical cavities (XFEL prototype, 1.3 GHz on site)
 - > 1 HIPPI (ESS like) elliptical cavities (704 MHz on site)
 - > 2 IFMIF QWR cavity in satellite extension (Sathori, 175 MHz on loan)
- Tests of fully integrated cryomodules at CEA so:
 - ➤ MACSE (TFF prototype with 1 1.3 GHz elliptical cavity)
 - ➤ 12 Spiral2 Cryomodules (1 HWR cavity/cryomodule, 88 MHz)
 - ➤ 1 ESS cryomodule (4 elliptical cavities, 704 MHz)
- Tests of cryomodules integrated at CEA and tested elsewhere:
 - ➤ Soleil 352 MHz cryomodules (180 kW CW)
 - Super-3HC cryomodules with third harmonic cavities (1.5 GHz)

EG: PRELIMINARY TEST OF ESS M-ECCTD

Cryomodule at 2K for few hours with stable He level

1st measurement of static losses at 2K:

~ 23W (estimations = 17W)

No dynamic loss measured (coupler window broke during doorknob installation)

LB650 COUPLER TESTS

- Conditioning sequence:
 - > TW from 10μs pulses to CW, cycling from low to ~2*max power, regulating power on outgasing rate
 - SW from 10μs pulses to CW, cycling from low to ~2*max power, maximizing E and B on ceramic window with variable short circuit
 - > Example of TW conditioning for ESS power coupler:

Coupler conditioning zone

LB650 DRESSED CAVITY TESTS

- The test of LB650 dressed cavity has the goals of verifying:
 - > the power coupler conditioning and performance with the cavity.
 - > the cavity performance with the coupler + cryogenic loads
 - > the cold tuning system (CTS) ability and performance.
 - the LLRF ability and performance, including microphonics studies.
 - ➤ the high power RF amplifier ability and performance in combination with the cavity and LLRF.

Implementation
of the cavity and
the coupler in
the cryostat

➤ Will need to improve radiological protection of CryHoLab due to more stringent safety rules (estimated to ~150 k€ concrete shielding)

LB650 DRESSED CAVITY TESTS

List of tests for ESS dressed cavity at Uppsala

		o diessed cavity at oppsala	
Warm test	Cool down	Cold test	
✓ Central cavity frequency and spectrum of HOM (pass band) ✓ Qe	Frequency shift/ He bath pressure variation	 ✓ Coupler cold conditioning ✓ Cavity conditioning ✓ Central frequency ✓ Loaded Q and Qe 	
✓ Coupler warm conditioning		 ✓ Cavity level profile: let the LHe evaporate to low levels ✓ Effect of CV105 in heat load ✓ Cavity's power limit ✓ Effect of different FPC cooling temperatures in heat load ✓ Max load on the 2K pumps 	
	 ✓ Q0 ✓ Dynamic heat load ✓ Max gradient ✓ Dynamic Lorentz force detuning 		
		 ✓ Stabilization of the cavity field with LLRF using only RF compensation ✓ Dynamic Lorentz force detuning ✓ Tuning range of the slow step tuner 	
		✓ Tuner related testing	

CRYOGENICS LOADS IN LB650 CRYOMODULE

Table 2.7: Cryogenic loads in SC cryomodules for operation in the CW regime

CM type	Number of CMs	Static loads per CM, (W)		Dynamic loads per CM, (W)	Total load at 2 K per CM, (W)	
		70 K *	5 K *	2 K	2 K	2 K
LB650	11	48	16	2	58.1	60.1

Table 2.9: Maximum allowed heat loads per cryomodule

CM type	70 K	5 K	2 K
LB650	68 W	24 W	78 W

- ➤ Liquid Helium liquefier capacities most probably will have to be increased (80W max), even if cold 35-50K screen is LN₂ cooled.
- ➤ New 650 MHz RF wave guide system has to be installed in ESS/SARAF bunker

CO NON EXHAUSTIVE LIST OF CRYOMODULE TESTS

- Mostly the same philosophy as for dressed cavity tests:
 - Warm pass band measurement for 3 cavities string (HOM spectrum)
 - Warm couplers conditioning with cavities out of resonance
 - > Cavities frequency shift and displacement during cool down to 4K
 - ➤ Low power cavity Q₁ measurement, cold frequencies and HOM spectrum, tuner+piezo tests
 - > Cool down to 2K and repeat above (maybe skip 4K step?)
 - Cold couplers conditioning with cavities out of resonance
 - > Static heat loss measurement of cryomodule
 - ➤ Measure individual cavities performances at 2K at high RF power:
 - Q° and E_{acc} (other cavities detuned) with control of field emission
 - Dynamic heat loss measurement + cryo load for coupler
 - tuner+piezo range; LLRF + microphonics; Lorentz force detuning (?)
 - > Caracterize full cryomodule performance with all cavities tuned at high RF power:
 - Total dynamic heat loss measurement
 - Final tuning+piezo adjustment and LLRF + microphonics
 - Tests are mandatory for 1st pre-serie CM, preferred for 3 additional series CM